
Pre-print submitted to Applied Numerical Mathematics

Monotone Multivariate Interpolation of Scattered Data

Using Nested Hypercubes

Scott M. Murman*

NASA Ames Research Center, Moffett Field, CA, USA

Abstract

One-dimensional linear interpolation is extended to arbitrary dimensions and scattered data

using nested hypercubes. This is targeted at the evaluation of aerodynamic performance data

in trajectory simulations and the generation of multi-fidelity response surfaces, though the ap-

proach is general. The algorithm demonstrates logarithmic scaling and quadratic convergence

for regular and scattered interpolation centers. The performance for synthetic aerodynamic

data, including steep gradients near the sonic line, is also provided. The efficiency of multi-

threaded parallel implementations in a shared-memory arena, including the use of graphical

processing units, is demonstrated.

Nomenclature

ϕ radial basis function

d dimensions of the parameter space

m number of functionals

n number of interpolation centers

p number of partitions

1 Introduction

The choice of an interpolation method for multivariate scattered data depends in large part

upon the features of the data and the intended application[1]. The primary motivation for the cur-

rent work is the evaluation of aerodynamic performance data in trajectory simulations, though the
*Scott.M.Murman@nasa.gov

1 of 11

American Institute of Aeronautics and Astronautics

approach is general and has broad applicability. The parameter space for this application has high

dimensionality, typically d ≥ 6, as a flight vehicle has a minimum of six degrees of freedom, and

often more when controllers are considered. The data contains multiple uncorrelated functionals,

again a minimum of six for the general case, and is naturally clustered near design points and steep

gradients. It is common to encounter discontinuous data, for example near the sonic line or when

using step controllers, so that a monotonic interpolation is required. Monte Carlo analysis or design

optimization can generate millions of trajectory simulations which exercise obscure regions of the

aerodynamic database, often requiring extrapolation (cf. [2] for an example). Thus we require an

efficient interpolation method which scales well for both high dimensionality and number of inter-

polation centers (n), can handle highly clustered data, while still being monotonic and supporting

extrapolation.

Current methods for handling this type of aerodynamic performance data are typically restricted

to partitioned structured data[3]. This approach is difficult to automate, and cannot fully leverage

Design of Experiments methodology, placing too much emphasis on off-design or benign conditions.

This lack of flexibility imposes inefficiencies upstream into the most expensive part of the process, the

data generation itself, either with physical testing (e.g. wind tunnels) or computational simulations.

Global methods for interpolation based on radial distance, such as radial basis functions (RBF)

or Kriging, are popular for smooth, evenly-spaced data sets. These methods have the potential

for high accuracy[4], but are expensive, in terms of storage (typically O(n2)) and complexity (typi-

cally O(n log n)). The weight calculation for radial distance methods can become numerically stiff

for large d, and preconditioning tuned to the individual dataset is common to achieve consistent

performance[5]. These are non-monotonic methods, which can produce excessive Gibbs phenom-

ena for clustered or non-smooth data, and can be unsuitable for extrapolation. Further, a separate

weight calculation is necessary for each functional.

Alternatively, local simplicial methods (tesselation) can provide a monotonic interpolation inde-

pendent of the number of functionals, and are less sensitive to clustering. However, these methods

become prohibitively costly in higher dimensions (approaching O(n⌊d/2⌋−1) complexity)[6, 7], and

require special handling for extrapolation.

The current work describes a local method for efficiently constructing a convex hull surround-

ing an interpolation point which scales well to high dimensions and number of interpolation centers

(optimal in storage and O(2d log n) in complexity), while still allowing extrapolation without special

handling. Clustered data is naturally handled in the convex hull construction. The algorithm is out-

lined in the next section, followed by numerical examples to document the accuracy and efficiency

for practical problems.

2

..

d0

.

d1

.

(00)

.

(10)

.

(11)

.

(01)

Figure 1: Bins of a two-dimensional hypercube formed using the sign permutations (±1) of the
coordinates surrounding a sample point (open circle) at the origin. The closest radial interpolation
center (filled circles) in each bin is selected. Bins are indexed using a 2d-bit integer.

2 Interpolation Method

The one-dimensional linear interpolation method is extended to arbitrary dimensions using bins

to create a convex hull representation of the data around a sample point. The bins are formed using

the sign permutations (±1) of the coordinates, analogous to a d−dimensional hypercube. Within

each bin the closest radial point from the set of normalized interpolation centers is chosen, and a

convex hull is formed using the set of bins as the vertices. This is shown graphically in two dimen-

sions in Fig. 1. An integer with 2d bits contains the indices of each bin. The interpolation centers

are normalized using the span of the parameter space. Data at the sample point is constructed by

successively contracting the lowest dimension of the hypercube from d → 0 using linear interpo-

lation along the edges of the hypercube (cf. Fig. 2). This provides a direct monotone interpolation

method with quadratic convergence.

Choosing the closest radial interpolation center within each hypercube bin removes difficulties

due to data clustering. The current method is compared to the convex hull of a simplicial method

for clustered data in Fig. 3. The hypercube binning naturally agglomerates the clustered centers

and results in a regular polytope which does not require deconstruction to simplices. When an ap-

3

..

d0

.

d1

.

d2

Figure 2: Contraction of nested hypercubes to the sample point using linear interpolation along
each edge of the hypercube.

propriate interpolation center is not found within a bin the algorithm reverts to nearest-neighbor

(zeroth-order) extrapolation for the affected dimensions, preserving monotonicity. Figure 4 demon-

strates extrapolation in two dimensions for the case of pure extrapolation, and mixed extrapolation

and interpolation. The important point is that extrapolation in this manner does not require special

processing and the result remains monotone.

As the convex hull is constructed directly the algorithm has optimal memory usage, only re-

quiring storage of the dm data samples at each interpolation center. The algorithmic complexity

is independent of the number of functionals being evaluated. Using a linear search to find the

closest radial interpolation center in all hypercube bins the algorithmic complexity is O(2dn). To

determine the interpolation coefficients directly would require solving a linear system with O(23d)
complexity, however since we perform a contraction along each hypercube dimension individually

the complexity reduces to O(2d) to determine the interpolated values at the sample point.

It is straightforward to construct hash or tree search algorithms to reduce the complexity of the

radial search, however these require care to handle general clustered data. As we search for the

nearest radial point to our sample, we can bin the interpolation centers based on radial distance

from an arbitrary point for the cost of an initial O(n log n) pre-sorting of the data (cf. Fig. 5). The

minimum distance from the sample point to the inner or outer radius of each bin is easily determined

4

..

d0

.

d1

Figure 3: Convex hull due to agglomerating clustered interpolation centers to the nearest radial
value (solid polygon), in contrast with a simplicial algorithm (dashed polygon).

..

d0

.

d1

(a) Extrapolation
..

d0

.

d1

(b) Mixed Interpolation and Extrapolation

Figure 4: Extrapolation examples in two dimensions. When only a single donor is found (a), the
value is extrapolated in d1 and d0. When sufficient candidates are found in d1, but not d0 (b), the
value is first interpolated along d1, then extrapolated along d0.

5

0.5

0.6

0.7

0.8

0.9

1

1.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

d1

d0

Figure 5: Normalized two-dimensional parameter space sorted into spherical bins based on dis-
tance from the approximate multivariate median (black circle). The colored squares are members
of each bin, and the orange circles represent the extent of the spherical bins.

from

rmin = |∥d − d◦∥ − rsphere| (1)

where d◦ is the center of the spherical bins. As this point is arbitrary, we use an approximate

multivariate median of the interpolation centers, which is straightforward to compute and performs

well in practice. Using Eqn. 1 and the radial extent of the spherical bins we can provide a good

initial guess and quickly ignore extraneous regions, resulting in a search algorithm with complexity

O(2d log n).
As the algorithm outlined above requires minimal memory overhead, it is straightforward to

construct a multithreaded reduction algorithm to determine the nearest radial centers in parallel.

This reduces the algorithmic complexity further to O(2d log n
p
), where p is the number of threads.

The next section provides examples and timings for both a multicore CPU and graphics processing

unit (GPU).

6

-8

-7

-6

-5

-4

-3

-2

-2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

lo
g
1
0
‖f
−

f e
x
‖ 2

log10

√
1
n

regular
scattered
regular, RBF
scattered, RBF

Figure 6: Convergence of the nested hypercube interpolation method for regular and scattered
representations of a smooth functional. Comparison with a multi-quadric RBF method (ϕ(r) =√

r2 + 1). The finest resolution is not included in the RBF results due to computational cost.

3 Numerical Examples

The formal accuracy of the interpolation method is demonstrated for smooth data using the

two-dimensional test function,

fex (d0, d1) = a0 + a1d0 + a2d
2
0 + a3d1 + a4d

2
1 + a5d0d1 di ∈ [0, 1] (2)

with the coefficients ai chosen from a random draw over [−1, 1]. One hundred random samples

were taken, and the median value of the error over these samples was calculated from 100 trials.

Convergence of the error with increasing density of the interpolation centers is presented in Fig. 6

for both a regular lattice, and scattered centers randomly drawn from a uniform distribution. In-

terpolation using a multi-quadric RBF is included for comparison. The current nested hypercube

method demonstrates quadratic convergence for both the regular and scattered sets. As expected for

this smooth functional, the global RBF interpolation method provides improved predictions over

the local monotone scheme at coarse resolutions, with the increment decreasing with increasing

resolution.

The interpolation method is tested using synthetic aerodynamic data based on a model for bluff-

body drag variation with Mach number[8], and a sinusoidal variation of the loading with angle of

7

0
45

90
135

1800

0.5

1

1.5

20.5
1

1.5
2

2.5
CD

α

Mach

CD

(a) Synthetic Data and Interpolation Centers

0
45

90
135

1800

0.5

1

1.5

20.5
1

1.5
2

2.5
CD

α

Mach

CD

(b) Nested Hypercube

0
45

90
135

1800

0.5

1

1.5

2-20
-10

0
10
20

CD

α

Mach

CD

(c) Gaussian RBF

Figure 7: Reconstruction of a synthetic aerodynamic response surface from scattered interpolation
centers using the nested hypercube and RBF (ϕ(r) = e−r2

) methods.

attack. The synthetic data is shown in Fig. 7a, along with 256 scattered interpolation centers taken

from Gaussian sampling centered on the sonic line and 160◦ angle of attack. These scattered inter-

polation centers are used to reconstruct the response surface using the nested hypercube scheme in

Fig. 7b, and a Gaussian RBF in Fig. 7c. The nested hypercube method provides a linear estimate

of the response surface in regions with coverage from the interpolation centers, and a reasonable

extrapolation outside the hull of the centers. The surface generated from a straightforward im-

plementation of the Gaussian RBF is unsuitable for any application. Other choices for the RBF

performed similarly.

The computational performance and scalability of the algorithm is demonstrated in Fig. 8. An

8

increasing number of interpolation centers are queried to interpolate 1000 samples for d = 2, 4,

and 6. The results are presented for m = 6 linear functionals where the interpolation is exact to

machine precision. The timings include both the radial search and actual interpolation. Results for

both serial and parallel multicore search implementations are presented. Determining the closest

radial interpolation center is implemented using standard multithreaded reduction methods. The

interpolation centers within each spherical bin are divided into p partitions of dimension nbin/p,

with the hypercube bins being treated serially within each partition. After finding the minimum in

each partition in parallel, a serial global reduction across the partitions determines the final result.

The implementation only performs the minimum reduction in parallel, so there is no expectation

to approach ideal parallel scalability in this application. The GPU implementation is currently

optimized for d = 3, and hence is penalized when d < 3. As expected, the results demonstrate that

the hypercube implementation asymptotically does scale logarithmically with increasing number of

interpolation centers for all dimensions, indicating that the radial search is the predominate cost.

The empirical data indicates an overall scaling of roughly O(2d+1 log n). We can interpolate six

functionals through 17x106 centers for d = 6 in roughly 0.1 sec per sample using the GPU, and

0.15 sec per sample using a single Intel Nehalem 8-core node. For comparison, the parallel RBF

implementation in [9] uses 106 wallclock seconds on 1024 cores to determine the weighting for

50x106 interpolation centers for a single functional in d = 2.

4 Summary

The nested hypercube interpolation method provides a robust and efficient method for query-

ing clustered multivariate data with monotonicity constraints. The algorithm displays logarithmic

scaling with increasing numbers of interpolation centers for practical problems. The primary appli-

cation for the current work is the analysis of aerodynamic trajectory data. Generating aerodynamic

performance data is relatively much more expensive than evaluating it, and the current method

places the burden of cost where it can most easily be absorbed. The ability to rapidly and ac-

curately interpolate scattered multivariate data provides the flexibility to utilize aerodynamic data

generated by optimized or disparate sources without loss of fidelity. The method provides a general

scheme for querying multivariate data, and also facilitates creation of structured response surfaces,

for example in multi-fidelity uncertainty quantification.

9

0.1

1

10

4 8 12 16

w
al

lc
lo

ck
(s

ec
)

n x 10−6

CPU 1
CPU 8
GPU

(a) d = 2

1

10

100

4 8 12 16

w
al

lc
lo

ck
(s

ec
)

n x 10−6

CPU 1
CPU 8
GPU

(b) d = 4

10

100

1000

4 8 12 16

w
al

lc
lo

ck
(s

ec
)

n x 10−6

CPU 1
CPU 8
GPU

(c) d = 6

Figure 8: Computational timings to interpolate 1000 samples for representative scaling studies.
The CPU is an Intel Xeon W5580 3.2GHz, and the GPU is an NVIDIA Tesla C2070.

10

References

[1] Alfeld, P., “Scattered Data Interpolation in Three or More Variables,” in Mathematical Methods

in Computer Aided Geometric Design, pp. 1–33, Academic Press, Boston, MA, 1989.

[2] Striepe, S.A., Way, D.W., Dwyer, A.M., and Balaram, J., “Mars Science Laboratory Simulations

for Entry, Descent, and Landing,” Journal of Spacecraft and Rockets, 43(2):311–323, 2006.

[3] Davis, J.L., Striepe, S.A., Maddock, R.W., Hines, G.D., Paschall, S., Cohanim, B.E., Fill, T.J.,

Johnson, M.C., Bishop, R.H., DeMars, K.J., Sostaric, R.R., and Johnson, A.E., “Advances in

POST2 End-to-End Descent and Landing Simulation for the ALHAT Project,” AIAA Paper

2008-6938, 2008.

[4] Fornberg, B. and Flyer, N., “Accuracy of Radial Basis Function Interpolation and Derivative

Approximations on 1-D Infinite Grids,” Advances in Computational Mathematics, 23:5–20, 2005.

[5] Fasshauer, G.E. and Zhang, J.G., “Preconditioning of Radial Basis Function Interpolation Sys-

tems via Accelerated Iterated Approximate Moving Least Square Approximation,” Computa-

tional Methods in Applied Sciences, 11:57–75, 2009.

[6] Seidel, R., “Constructing Higher-Dimensional Convex Hulls at Logarithmic Cost per Face,”

in Proceedings of the 18th Annual ACM Symposium on Theory of Computing, 1986.

[7] Clarkson, K.L., Mehlhorn, K., and Seidel, R., “Four Results on Randomized Incremental

Construction,” Computational Geometry, 3(4):185–212, 1993.

[8] Murman, S.M., “Drag Behavior of Unconstrained Bluff Bodies,” NASA Technical Memoran-

dum TM-2010-216406, September 2010.

[9] Yokota, R., Barba, L.A., and Knepley, M.G., “PetRBF - A parallel O(N) algorithm for radial

basis function interpolation with Gaussians,” Computer Methods in Applied Mechanics and Engineering,

199:1793–1804, 2010.

11

	Introduction
	Interpolation Method
	Numerical Examples
	Summary
	References

